

Università degli Studi di Bari Aldo Moro Orientamento Consapevole Corsi di Laurea in Biotecnologie

La procreazione assistita modelli animali e medicina traslazionale

Maria Elena Dell'Aquila

Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica (DBBB)

L'origine delle ART è nel mondo animale

 Le assisted reproductive technologies (ART) nascono nel mondo animale

 I pionieri delle ART (C. Polge, R.M. Moor, R. Edwards, J. Gordon, S. Willadsen, I. Wilmut, A. Trounson, L. Gianaroli) si formano e sviluppano le loro idee in ambito animale

Una scienza giovane

Dove studiamo le ART ad UNIBA

Le ART sono Bio....tecno....logie

Il background necessario per un biotecnologo della riproduzione

In quali specie animali le studiamo

Animali da laboratorio

Animali da reddito

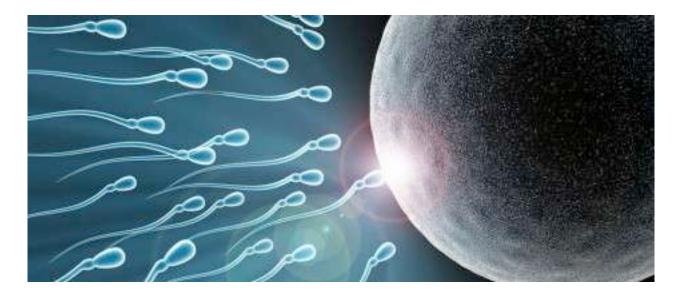
Finalità delle ART negli animali da reddito

Incremento dell'efficienza riproduttiva

(riduzione intervallo post-partum ed intervallo generazionale)

- Miglioramento genetico
 (selezione traits produttivi, eliminazione traits patologici)
- Superamento dell'infertilità
 (differente incidenza delle diverse forme nelle specie)

Controllo trasmissione patologie infettive


(normativa trasferimento internazionale germoplasma animale)

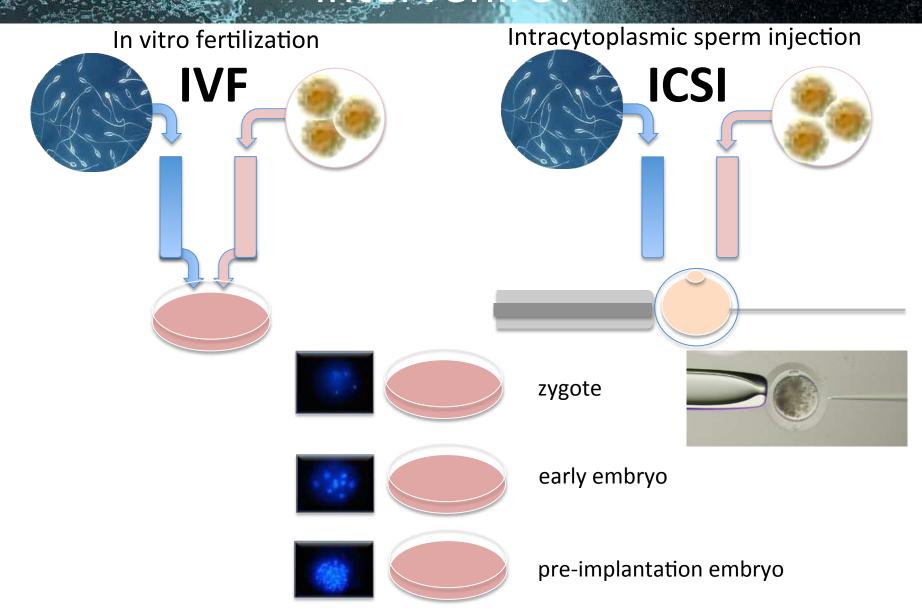
Finalità delle ART nell'uomo

Superamento dell'infertilità

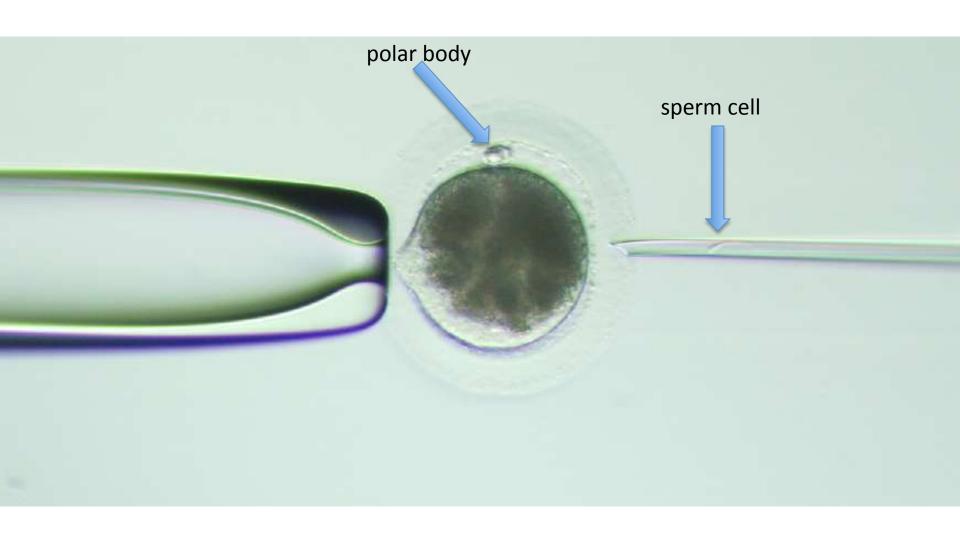
- Controllo trasmissione patologie ereditarie gravi
- Controllo trasmissione patologie infettive

L'Infertilità: quali sono le cause?

- Diversa incidenza, diversi tipi, diverse specie
- Infertilità congenita e acquisita


Cause

(genetiche, infettive, management, alimenti, ambiente, stress, stile di vita, abuso farmaci, droghe, alcol, fumo.....)


- Anomalie (morfologiche, funzionali...)
- Malattie infettive aspecifiche (patogeni opportunisti)
- Malattie infettive specifiche (batteri, agenti protozoari, funghi, virus)
- Tumori

Conseguenze sociali ed economiche

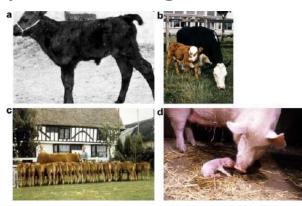
Con quali tecnologie possiamo intervenire?

ICSI nei modelli animali

Tecnologie collegate

- Crioconservazione
 (congelamento lento e vitrificazione)
- Valutazione di qualità
 (morfologica, biochimica, molecolare, omica)
- Manipolazioni cellulari (diagnostiche o migliorative)
- Manipolazioni molecolari (transgenici, cloni)

Il contributo della Animal Research Station Cambridge (UK)


- Dal 1932: University Farm Facoltà di Agraria Università di Cambridge – Reproductive Physiology in Farm Animals
- Dal 1942: I° centro di Inseminazione Artificiale nel mondo

Milestones della Animal Research Station

- 1949 proprietà CRP del glicerolo Frosty I Criobiologia
- Test multi-parametrici per valutazione qualità seme
- Multiple ovulation & embryo transfer (MOET)
- Congelamento embrioni (Frosty II)
- 1977- IVM (ruolo delle cellule del cumulo), IVF, IVP
- 1986 Manipolazioni cellulari embrione (splitting, SCNT, ESC)
- Animali transgenici per GH e x geni umani del complemento

Cronologia delle ART animali

1949 Congelamento del seme

1950 Inseminazione artificiale (AI) con seme congelato

1951 Capacitazione del seme

1960 Ipotalamo/Ipofisi/Gonadi e induzione ovulazione multipla (MO)

1950-70/80 Embryo Transfer (ET) chirurgico e non chirurgico

1975-80 Produzione di embrioni in vitro (IVM, IVF, IVP)

2000/2010 OMICS and nanotechnologies

1980-90 Crioconservazione (slow freezing/vitrification) embrioni 1980-90 Manipolazioni cellulari embrioni e Embryonic Stem Cells 1990 Microfertilizzazione assistita (PZD, PZR, SUZI, ICSI, IMSI) 1990 Diagnosi genetica preimpianto, sessaggio embrioni e seme 1990 Produzione di animali transgenici 1990/2000 Animali clonati e clonati/transgenici 2000/2010 Computer-assisted analyzer; 3D imaging

In quali specie vengono applicate

Animali d'allevamento

Animali da compagnia

Razze autoctone

Attuali sviluppi delle ART in zootecnia

- Numerosi laboratori di ricerca in tutto il mondo contribuiscono al continuativo sviluppo delle biotecnologie riproduttive che, in particolare per la specie bovina, sono ormai una realtà applicativa sia in tutti i paesi a zootecnia avanzata (AI, sincronizzazione calori, IVP, ET).
- Per altre specie di importanza economica (ovini, equini, suini), l'Italia vanta una posizione di rilievo sul fronte della ricerca e del trasferimento di tecnologia ad aziende operanti nel settore.

Una tecnologia speciale...,l'SCNT un ponte tra zootecnia e medicina

- Tecnica della clonazione somatica o "somatic cell nuclear transfer", una cellula somatica è trasferita all'interno di un ovocita privato del proprio nucleo. L'embrione si svilupperà in un soggetto geneticamente identico al donatore.
- La clonazione può essere associata all'ingegneria genetica, le cellule utilizzate per la clonazione sono geneticamente modificate;
- Dopo la nascita della pecora Dolly nel 1996, la tecnica della clonazione è stata adattata alle caratteristiche biologiche di diverse specie animali generando cloni (es.: bovina, equina e suina).

In Italia:

- 1999 primo clone da toro adulto
- 2001 primo clone da muflone sardo
- 2003 primo cavallo clonato al mondo
- 2005 primo suino clonato in Italia

cellula donattice

l nucleo della cellu

Queste due celule vengon

mbrione

Attuali sviluppi delle ART nel settore biomedico (1)

Modelli animali

- Xenotrapianti (suini con caratteristiche genetiche tali da renderli più immunocompatibili con l'uomo); obiettivo: creare suini donatori di tessuti per l'uomo;
- Suini per la chirurgia sperimentale (portatori di geni marcatori che consentono di identificare i loro tessuti dopo il trapianto
- Suini/ovini/bovini modello di patologie degenerative, oncologiche, infettive, metaboliche

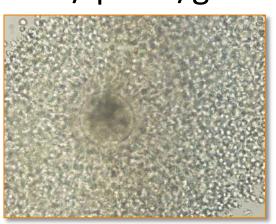
Biofarmaci da grandi animali

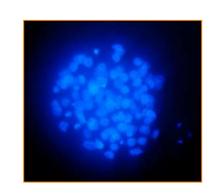
 Bovini/ovini per produzione anticorpi, ormoni, interferone, fattori della coagulazione del sangue,...

Attuali sviluppi delle ART nel settore biomedico (2)

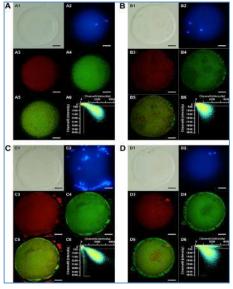
- Le cellule embrionali staminali hanno la capacità di dare origine a tutti i tipi cellulari che costituiscono un individuo adulto; rivestono interesse per la ricerca biomedica, es. differenziamento allo scopo di comprenderne i meccanismi molecolari e di sviluppare dei protocolli per ottenere cellule idonee alla riparazione dei tessuti tramite trapianto (terapia cellulare).
- Lo sviluppo di **test di tossicità** in vitro rappresenta un'area di ricerca in forte espansione in tutti i paesi industrializzati perché **riduce** l'utilizzo degli animali da laboratorio, e fornisce all'**industria** metodiche efficaci per testare effetti tossici di sostanze chimiche di varia natura.
- L'UE finanzia progetti di ricerca integrati allo scopo di favorire lo sviluppo di questi test.

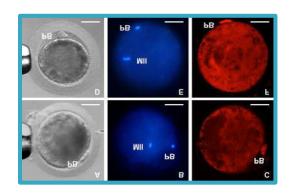
Ricerca traslazionale (1): germoplasma

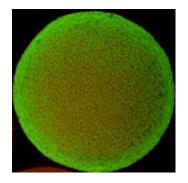


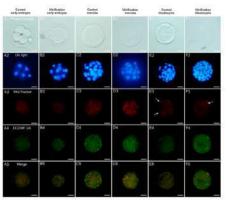

Gli animali come modello per:

- Inattività dell'asse Ipotalamo/ipofisi/gonadi
- Proteine della ZP
- Atresia follicolare
- Interazioni ovocita-CCs
- Applicazioni OMICs

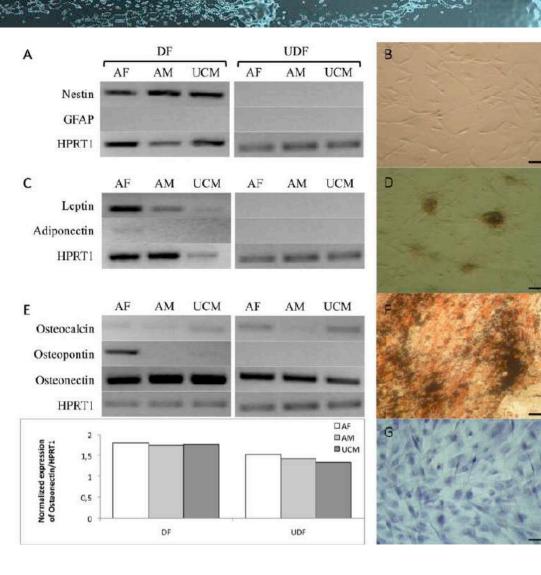


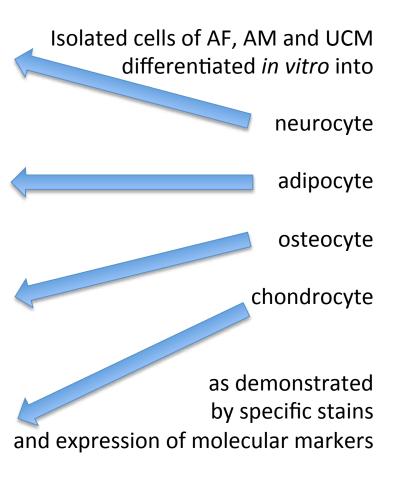

Ricerca traslazionale (2): germoplasma




Gli animali come modello per la bioenergetica:

- Age/obesity/lifestyle-related infertility;
- Ovociti di soggetti prepuberi
- Confronti intra-soggetto
- Esposizione cronica/acuta ai pollutanti



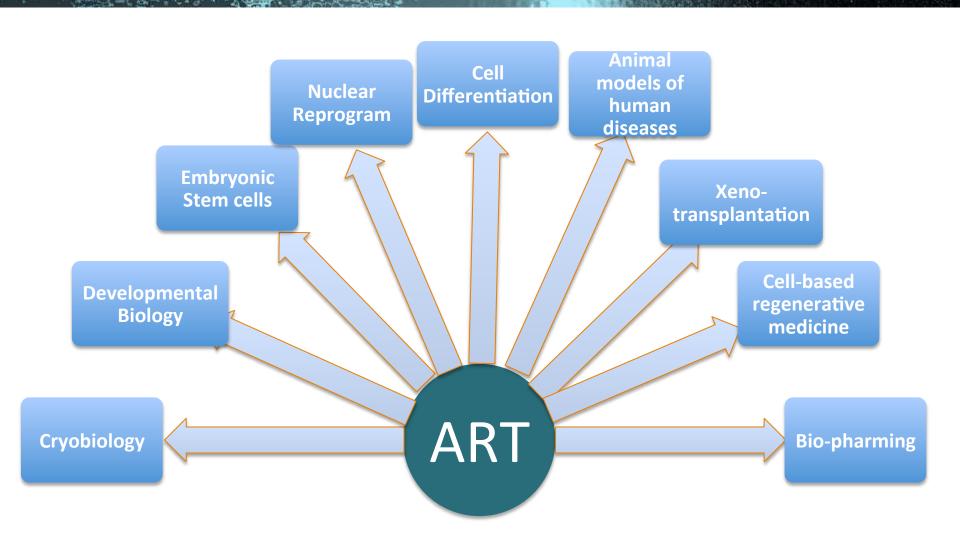


La ricerca traslazionale (3): Stem cells

Le nostre attività di ricerca

TEMATICHE

- 1) Studio della maturazione funzionale dei gameti e dello sviluppo embrionale in modelli di animali da reddito;
- 2) Bioenergetica di gameti ed embrioni
- 3) Test di tossicità in gameti ed embrioni (DEHP, micotossine, CRP, HMs)
- 4) Caratterizzazione di cellule staminali da annessi fetali/organi riproduttivi

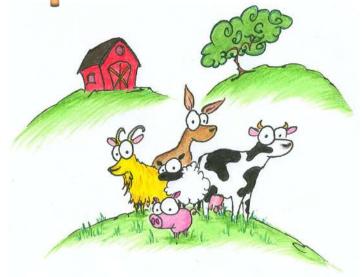

OBIETTIVI

- incremento dell'efficienza riproduttiva;
- 2) studi traslazionali per la medicina riproduttiva umana

PROGETTI

- RETE LABERPAR (Regione Puglia)
- ONEV (PON MIUR)
- PROCAMED (ENPI)
- SALVAGUARDIA RAZZE AUTOCTONE OVINE (Puglia Sardegna)
- OMICS BIOMARKERS MINISTERO DELLA SALUTE

Branche della ricerca biomedica derivate dalle ART animali


Conclusioni

- Le biotecnologie della riproduzione sono sempre più utilizzate e diffuse in tutto il mondo con diverse applicazioni
- Oltre al campo agro-industriale ci sono prospettive nella ricerca e nel campo biomedico
- Lo sviluppo delle biotecnologie nel settore agroalimentare dipenderà da un cambio sostanziale della percezione negativa

BIOTECNOLOGI

Grazie per l'attenzione!

